1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

ПРИНЯТО
Педагогическим советом
ГБОУ лицей № 226
Фрунзенского района
Санкт-Петербурга
Протокол от 29.08.2025 № 1

УТВЕРЖДЕНО Приказом директора ГБОУ лицей № 226 Фрунзенского района Санкт-Петербурга от 29.08.2025 № 82

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА ПОДВОДНАЯ РОБОТОТЕХНИКА

Срок реализации: 2 учебных года (128 часов) Возраст обучающихся: 9-11 лет

Разработали:

педагоги дополнительного образования Строганова В.Н. Кузьмина М.В.

Санкт-Петербург 2025 год

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>A</u>, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

Оглавление

Пояснительная записка	3
Концепция программы «Подводная робототехника»	4
Цель и задачи программы	5
Особенности организации учебного процесса	5
Гребования к результатам освоения курса	7
Контроль и оценка планируемых результатов	8
Материально-техническое обеспечение внеурочной деятельности	10
Список рекомендованной литературы	10
Содержание курса "Подводная робототехника" (2 года обучения)	11
Основные разделы программы	13
Методы и формы работы	15
Формы проведения занятий	16
Гематическое планирование, 3 класс (первый год обучения)	18
Гематическое планирование, 4 класс (второй год обучения, 64 часа)	19

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>А</u>, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

Пояснительная записка

Направленность программы: Техническая

Адресат программы Программа предназначена для детей в возрасте от 9 до 11 лет **Уровень освоения программы:** базовый.

Актуальность программы обусловлена растущей потребностью в инженерных кадрах для освоения Мирового океана и соответствует государственным приоритетам в области технологического развития. Педагогическая целесообразность заключается в последовательном развитии инженерного мышления через переход от экспериментов и пилотирования в 3 классе к основам программирования в 4 классе. Программа формирует ключевые компетенции XXI века, включая проектную работу, решение практических задач и развитие пространственного мышления в доступной для младших школьников форме.

Отличительные особенности программы:

- 1. Поэтапное погружение в предметную область программа реализует принцип "от простого к сложному": на первом году обучения (3 класс) упор делается на экспериментальную деятельность и освоение пилотирования, что соответствует возрастным особенностям детей. Так же в первый год обучения происходит знакомство с визуальной средой программирования (Scratch), а на втором году (4 класс) добавляется программирование, которое начинается с повторения и углубления знаний в визуальной среде (Scratch) с последующим переходом к текстовому программированию (Arduino IDE).
- 2. Уникальная материально-техническая база использование специализированных образовательных комплексов «Океаника» предоставляет возможность работы с реальным, а не виртуальным оборудованием, что формирует у учащихся практические навыки сборки, балансировки и управления подводными роботами в водной среде.
- 3. Междисциплинарный характер программа органично объединяет элементы физики (изучение плавучести, архимедовой силы), информатики (алгоритмизация, программирование), технологии (конструирование, инженерия) и экологии, демонстрируя взаимосвязь научных дисциплин на практике.
- 4. Проектно-соревновательная направленность содержание программы ориентировано на подготовку и участие в профильных соревнованиях по подводной робототехнике, что обеспечивает высокую учебную мотивацию и способствует развитию soft skills (командная работа, проектное мышление, презентационные навыки).

В основе построения курса лежит принцип разнообразия творческо-поисковых задач, который реализуется через два ключевых аспекта:

- 1. Разнообразие по содержанию
 - Экспериментальные задачи (изучение плавучести, балансировки)
 - Конструкторские задачи (сборка и модернизация аппаратов)
 - Пилотажные задачи (управление в бассейне, выполнение миссий)
 - Программируемые задачи (создание алгоритмов автономной работы)
 - Исследовательские задачи (анализ данных с датчиков, решение прикладных проблем)

2. Разнообразие по сложности

- Базовый уровень (действия по образцу, отработка отдельных операций)
- Комбинированный уровень (сочетание освоенных навыков для решения типовых задач)

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>А</u>, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

- Творческий уровень (проектирование собственных решений без готовых алгоритмов)
- Проектный уровень (комплексные работы с самостоятельной постановкой целей и оценкой результатов)

Такой подход обеспечивает индивидуальную образовательную траекторию для каждого учащегося, поддерживает постоянный познавательный интерес и создает условия для развития как репродуктивных, так и творческих способностей.

Концепция программы «Подводная робототехника»

разработана соответствии c требованиями Федерального Программа государственного образовательного стандарта начального общего образования и ориентирована на формирование у учащихся начальных классов основ инженерного мышления и технологической грамотности. Курс реализуется в части учебного плана, образовательной организацией, рамках В общеинтеллектуального направления развития личности. Программа представляет систему ориентированных занятий, интегрирующих элементы физики, информатики и технологии через изучение основ подводной робототехники. Особое значение в процессе обучения имеет развитие у учащихся пространственного мышления, технического воображения и конструкторских способностей, которые формируют базис для успешного освоения предметов естественно-научного цикла в основной школе.

Данный курс способствует формированию метапредметных компетенций: умению самостоятельно планировать действия, анализировать результаты экспериментов, корректировать решения на основе полученных данных. Практическая работа с робототехническими комплексами «Океаника» создает условия для развития у детей познавательной активности, технического творчества и уверенности в собственных силах. В процессе обучения учащиеся осваивают навыки проектной деятельности, учатся работать в команде и представлять результаты своего труда, что способствует успешной социализации и формированию готовности к решению практических задач.

Обоснованность программы

Актуальность программы обусловлена необходимостью формирования у учащихся начальной школы основ инженерного мышления и технологической грамотности в соответствии с вызовами цифровой экономики. Практика показывает, что современные школьники 9-11 лет демонстрируют высокий интерес к техническому творчеству, но испытывают трудности в системном применении знаний из различных предметных областей для решения практических задач. Данный курс предусматривает поэтапное формирование проектных компетенций через специально разработанную систему практических заданий, позволяющих преодолеть фрагментарность мышления и развить способность к целостному восприятию технических систем.

Новизна программы определена требованиями обновленного ФГОС НОО в части формирования цифровых и инженерных компетенций. Отличительными особенностями являются:

- 1. Определение видов проектной деятельности учащихся, направленных на достижение личностных, метапредметных и предметных результатов освоения курса подводной робототехники.
- 2. Реализация системно-деятельностного подхода через последовательное усложнение практических заданий от экспериментов с плавучестью до программирования автономных миссий.

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

- 3. Организация учебного процесса предполагает уровневое оценивание достижений учащихся на основе анализа готовых продуктов деятельности (собранных моделей, запрограммированных алгоритмов, решенных практических задач).
- 4. Мониторинг планируемых результатов осуществляется в рамках внутренней системы оценки через экспертную оценку педагога, анализ видеозаписей практических занятий и оценку защищенных проектов.
- 5. В основе оценки метапредметных результатов лежит методика анализа проектной деятельности, адаптированная для младшего школьного возраста.
- 6. При проектировании содержания занятий детально прописаны виды познавательной и практической деятельности учащихся по каждому модулю программы, обеспечивающие поэтапное формирование компетенций в области подводной робототехники.

Цель и задачи программы

Цель программы: формирование у учащихся 9-11 лет основ инженерного мышления и технологической грамотности через освоение принципов подводной робототехники на образовательных комплексах «Океаника».

Основные задачи программы:

- 1. Развитие конструкторско-технологического мышления в процессе освоения основных этапов создания технических систем: проектирования, сборки, программирования и тестирования подводных роботов.
- 2. Формирование практических навыков работы с современным оборудованием: освоение принципов управления ТНПА, знакомство с основами схемотехники и методами обработки данных с датчиков.
- 3. Развитие пространственного воображения и технической интуиции через проведение экспериментов по изучению плавучести, балансировки и гидродинамики подводных аппаратов.
- 4. Формирование основ алгоритмического мышления и умения программировать автоматические миссии с использованием визуальных и текстовых сред программирования.
- 5. Развитие исследовательской активности и умения самостоятельно решать технические задачи от постановки проблемы до практической реализации.
- 6. Формирование проектных компетенций и коммуникативных умений: способности работать в команде, распределять роли, представлять результаты и аргументированно защищать свои технические решения.
- 7. Формирование навыков применения естественнонаучных знаний на практике: реализации физических законов в работающих технических системах, использования математических методов для решения прикладных задач.

Таким образом, принципиальной задачей программы является развитие инженерного мышления и технологических компетенций через практическое освоение полного цикла создания подводных робототехнических систем, а не просто усвоение теоретических знаний.

Особенности организации учебного процесса

Программа каждого занятия рассчитана на 2 занятия по 40 минут для учащихся 3-4 классов. Организация обучения строится на принципах проектной деятельности и командного взаимодействия, где различные виды работ интегрированы в единый практико-ориентированный формат. Курс реализуется через систему чередующихся

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>А.</u> тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

активностей, где одновременно задействованы все участники образовательного процесса. В рамках каждого занятия команды распределяют роли: часть учащихся работает с пилотированием подводных роботов, другие участники параллельно выполняют тематические задания по смежным направлениям.

Структура учебного процесса включает:

- 1. Командные проектные сессии с распределением функциональных ролей:
 - Пилоты (управление аппаратами, отработка манёвров)
 - Конструкторы (сборка и модернизация аппаратов)
 - Программисты (разработка алгоритмов)
 - Исследователи (решение логических и географических задач)
- 2. Применение методов ТРИЗ для развития изобретательского мышления:
 - Решение противоречий в технических системах
 - Использование приемов фантазирования в проектировании
 - Применение алгоритмов решения изобретательских задач
 - Анализ ресурсов и возможностей технических систем
- 3. **Интеграция межпредметных связей** через формат образовательных "пазлов":
 - Географические квесты (изучение рельефа дна, течений, маршрутов)
 - Логические задачи (построение маршрутов, расчет параметров)
 - Программирование (создание алгоритмов автономного движения)
 - Конструирование (модернизация аппаратов под конкретные задачи)

Организационные принципы:

Ротация ролей обеспечивает освоение всех направлений деятельности каждым учащимся

Проектная интеграция - результаты работы каждой группы становятся частью общего проекта

Динамическое формирование заданий - сложность и содержание задач адаптируются под текущие образовательные потребности

Рефлексивные сессии - коллективное обсуждение результатов и выработка оптимальных решений

Методическое обеспечение включает:

- Комплект адаптивных заданий различного уровня сложности
- Систему кейсов для проектной работы
- Набор ТРИЗ-инструментов для решения технических противоречий
- Методические карты для организации командной работы

Такая организация учебного процесса создает условия для развития коммуникативных навыков, формирования проектного мышления и освоения базовых принципов командной работы в техническом творчестве. Принцип ротации обеспечивает равномерное освоение всех компонентов программы, а интеграция различных видов деятельности способствует формированию целостного представления о подводной робототехнике как комплексной научно-технической области.

Особое место в образовательной программе отведено **подготовке к соревнованиям по подводной робототехнике**

Программа включает систематическую подготовку учащихся к участию в профильных соревнованиях, которая реализуется через:

- 1. Отработку регламентных заданий
 - Тренировки по выполнению стандартных миссий: поиск и подъем объектов, прохождение ворот, работа с манипуляторами
 - Тайм-менеджмент в условиях ограниченного времени

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

- Распределение ролей в команде согласно регламенту

2. Развитие соревновательных компетенций

- Умение работать в стрессовых условиях
- Навыки оперативного принятия решений
- Способность адаптироваться к изменяющимся условиям трассы

3. Проектирование специализированных решений

- Оптимизация конструкции аппарата под конкретные задачи
- Разработка уникальных технических решений
- Создание специализированных инструментов и приспособлений

Критерии готовности к соревнованиям:

- Стабильное выполнение не менее 70% элементов трассы
- Умение проводить быструю диагностику и устранение неисправностей
- Наличие отработанной стратегии выполнения миссий
- Сформированные навыки эффективной коммуникации в команде

Подготовка к соревнованиям является логическим завершением учебного цикла и позволяет комплексно оценить сформированность всех целевых компетенций программы.

Требования к результатам освоения курса

Личностные результаты:

- Формирование ответственного отношения к работе с высокотехнологичным оборудованием
- Развитие познавательной активности и интереса к инженерно-техническому творчеству
- Воспитание настойчивости в достижении цели при решении технических задач
- Формирование культуры безопасной работы при пилотировании подводных аппаратов
- Развитие навыков самоконтроля и самооценки

Метапредметные результаты:

Регулятивные УУД:

- Умение планировать последовательность действий при сборке и программировании роботов
- Способность корректировать задания на основе анализа ошибок и испытаний
- Навыки управления временем при выполнении проектных работ

Познавательные УУД:

- Развитие пространственного мышления при конструировании аппаратов
- Формирование навыков работы с технической информацией
- Умение анализировать причины успехов и неудач в проектной деятельности

Коммуникативные УУД:

- Владение техниками эффективной работы в команде
- Развитие навыков презентации и защиты проектов
- Умение договариваться и распределять роли в группе

Предметные результаты:

Учащиеся должны знать:

- Основы устройства подводных робототехнических комплексов
- Принципы плавучести и основы гидродинамики

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

- Базовые алгоритмы программирования автономных миссий
- Технику безопасности при работе с электрооборудованием

Учащиеся должны уметь:

- Собирать и настраивать подводные аппараты
- Управлять роботами в различных режимах
- Создавать программы для автоматического выполнения задач
- Проводить испытания и анализировать результаты
- Модернизировать конструкцию под конкретные задачи

Учащиеся должны владеть:

- Навыками пилотирования подводных аппаратов
- Основами проектной документации
- Методами решения технических проблем
- Способами оптимизации конструкций

Контроль и оценка планируемых результатов

В основу изучения курса подводной робототехники положены ценностные ориентиры технического творчества и инженерной культуры, достижение которых определяется образовательными результатами. Оценка результатов проводится по трём уровням освоения программы.

Первый уровень результатов - приобретение базовых компетенций:

- Овладение приемами сборки и настройки подводных аппаратов
- Формирование начальных навыков пилотирования в стандартных режимах
- Умение читать и понимать технические схемы и инструкции
- Освоение основ безопасной работы с оборудованием
 - Второй уровень результатов развитие практических умений:
- Способность модифицировать конструкцию аппарата для решения конкретных задач
- Умение анализировать поведение робота в водной среде и корректировать настройки
- Навыки программирования базовых алгоритмов автономного движения
- Умение диагностировать типовые неисправности и устранять их

Третий уровень результатов - достижение проектной зрелости:

- Способность разрабатывать и реализовывать комплексные подводные миссии
- Умение оптимизировать технические решения с учетом multiple факторов
- Навыки командной работы над сложными проектами
- Способность творчески применять методы ТРИЗ для решения нестандартных задач Оценка достижения каждого уровня осуществляется через:
- Наблюдение за практической работой учащихся
- Экспертную оценку выполненных проектов
- Анализ результатов участия в соревнованиях
- Самооценку и рефлексию учащихся

Переход от одного уровня к другому характеризуется возрастанием самостоятельности в решении технических задач, сложностью реализуемых проектов и глубиной понимания принципов работы подводных робототехнических систем.

Диагностика результатов освоения программы подводной робототехники

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>А</u>, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

В основу изучения курса положены ценностные ориентиры инженернотехнического творчества и научно-исследовательской деятельности, достижение которых определяется образовательными результатами. Оценка результатов внеурочной деятельности проводится по трём уровням.

Первый уровень результатов - приобретение школьником технических знаний и первичного понимания принципов работы подводной робототехники:

- Знание основных компонентов подводных аппаратов и их назначения
- Понимание основ плавучести и гидродинамики
- Знание правил безопасности при работе с электрооборудованием
- Понимание основ программирования автономных миссий

Для достижения данного уровня результатов особое значение имеет взаимодействие ученика с педагогом как с носителем специальных технических знаний и практического опыта.

Второй уровень результатов - получение школьником опыта практического применения знаний и формирования ценностного отношения к инженерному творчеству:

- Осознание важности точности и аккуратности при сборке аппаратов
- Формирование ответственного отношения к технике и оборудованию
- Развитие настойчивости, упорства, стойкости при решении технических задач
- Ценностное отношение к командной работе и совместному проектированию

Для достижения данного уровня результатов особое значение имеет взаимодействие в проектных группах, где учащиеся получают практическое подтверждение acquired знаний и начинают осознавать их ценность.

Третий уровень результатов - получение школьником опыта самостоятельного проектирования и участия в соревновательной деятельности:

- Умение самостоятельно разрабатывать и реализовывать комплексные проекты
- Способность представлять результаты технического творчества широкой аудитории
- Готовность к участию в соревнованиях и защите своих разработок
- Формирование инженерного мышления и изобретательских компетенций

Для отслеживания результатов предусматриваются следующие формы контроля:

Стартовый контроль, позволяющий определить исходный уровень технической подготовки учащихся (результаты фиксируются в диагностической карте педагога).

Текущий контроль:

- Прогностический планирование последовательности действий до начала практической реализации проекта
- Пооперационный контроль за правильностью выполнения технических операций при сборке и программировании
- Рефлексивный анализ соответствия выбранных технических решений поставленным задачам
- Контроль по результату оценка работоспособности созданных аппаратов и систем **Итоговый контроль в формах:**
- Защита проектных работ
- Демонстрационные испытания аппаратов
- Участие в соревнованиях по подводной робототехнике
- Презентация портфолио проектов

Самооценка и самоконтроль включают определение учащимся границ своих технических возможностей, осознание проблемных зон и планирование дальнейшего развития.

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

Содержательный контроль и оценка результатов предусматривает выявление индивидуальной динамики развития технических компетенций каждого учащегося. Результаты фиксируются в диагностической карте, ведется накопительное портфолио достижений.

Материально-техническое обеспечение внеурочной деятельности

Для учащихся

- Подводные роботы-конструкторы «Океаника Кит» или «Океаника Пиранья».
- Персональные компьютеры/ноутбуки для программирования.
- Система хранения для индивидуальных проектов.

Для учителя

- Демонстрационный комплект робота (например, «Океаника Кит»).
- Ноутбук/ПК учителя с установленным ПО.
- Мультимедийный проектор или интерактивная панель.

Печатные пособия

- Учебник и рабочая тетрадь, предоставляемые проектом «Океаника».
- Методические указания, идущие в комплекте с роботами.
- Инструкции по эксплуатации и сборке.

Технические средства обучения

- Пульты управления к роботам.
- Зарядные устройства и запасные аккумуляторы.
- Коммуникационные буи для связи с роботом по Wi-Fi.

Информационно-коммуникативные средства

- Программное обеспечение: среды программирования Arduino IDE, Scratch (или другая визуальная среда, если используется конкретная от "Океаники").
- Мобильное приложение для управления и просмотра видео с камеры робота.

Оборудование класса

- Водоем для испытаний: стационарный бассейн (рекомендуемая глубина не менее 0.5 метра) или крупный аквариум.
- Столы для сборки с устойчивыми к влаге поверхностями.
- Стеллажи и системы хранения для роботов, инструментов и запасных частей.
- Набор инструментов: отвертки, пассатижи, кусачки и др.

Список рекомендованной литературы

Учебные пособия:

- Специализированные учебные пособия и рабочие тетради проекта «Океаника», предоставляемые учащимся в печатной или электронной форме
- Дидактические материалы, адаптированные для различных уровней подготовки обучающихся

Методические ресурсы для педагога:

- Доступ к специализированному разделу «Я педагог» на официальном портале проекта «Океаника»
- Библиотека готовых учебных материалов, включая видеоуроки, поурочное планирование и методические разработки
- Банк учебных заданий и проектных работ для дифференцированного обучения

Техническая документация:

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>А</u>, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

- Комплект инструкций по эксплуатации и методических указаний, поставляемых с робототехническими наборами «Океаника Кит» и «Океаника Пиранья»
- Технические паспорта и руководства по сборке и программированию подводных аппаратов
- Регламенты технического обслуживания и руководства по диагностике неисправностей

Дополнительные ресурсы:

- Доступ к онлайн-платформе проекта с интерактивными заданиями
- Видеотека с записями соревнований и мастер-классов
- База данных типовых проектов и лучших практик

Все учебно-методические материалы соответствуют целям и задачам образовательной программы и обеспечивают преемственность в освоении курса подводной робототехники.

Содержание курса «Подводная робототехника»

Методы и приемы организации учебной деятельности ориентированы на развитие практических инженерных навыков и проектного мышления. Программа каждого занятия рассчитана на 2 академических часа по 40 минут (80 минут), что позволяет реализовать комплексный подход к освоению материала, сочетая теорию с практикой.

- 1. Технический брифинг и планирование (10 минут)
- Постановка технического задания на занятие
- Распределение ролей в командах
- Обсуждение стратегии выполнения задачи
- Повторение правил безопасности
 - 2. Теоретический блок с практическими демонстрациями (20 минут)
- Изучение физических принципов работы систем аппарата
- Разбор типовых технических решений
- Анализ возможных ошибок и способов их устранения
- Демонстрация работы механизмов и датчиков
 - 3. Практический блок: работа в станциях (35 минут)

Станция 1 - Пилотирование и навигация

- Отработка навыков управления аппаратом
- Выполнение маневров различной сложности
- Работа с системой навигации

Станция 2 - Конструирование и сборка

- Модернизация конструкции аппарата
- Устранение технических неисправностей
- Сборка дополнительных модулей

Станция 3 - Программирование и отладка

- Написание и тестирование алгоритмов
- Работа с ланными латчиков

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А. тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

- Отладка программного кода
 - 4. Командный анализ и презентация результатов (15 минут)
- Демонстрация достигнутых результатов
- Анализ успехов и трудностей
- Коллективное обсуждение оптимальных решений
- Корректировка планов на следующее занятие
- Особенности организации сдвоенных занятий:
- Ротация станций обеспечивает освоение всех направлений деятельности
- Комплексный подход к решению технических задач
- Возможность реализации более сложных и длительных проектов
- Глубокая проработка каждого аспекта подводной робототехники
- Эффективное использование оборудования и пространства
- Преимущества сдвоенного формата:
- Оптимальное сочетание теории и практики
- Возможность полноценной проектной работы
- Снижение времени на организационные переходы
- Углубленное освоение сложных тем
- Формирование целостного представления о технических системах

Дополнительная, не регулярна 4. Станция - развитие логики и мышления (ТРИЗ) (10-12 минут)

Цель станции: Развитие системного мышления и изобретательских навыков через методы Теории решения изобретательских задач.

Формат работы:

- Командное решение кейсов
- Индивидуальные задания на развитие творческого мышления

Для 3 класса:

Решение технических противоречий уровня "просто-сложно":

- "Как увеличить грузоподъемность, не уменьшая скорость?"
- "Как улучшить маневренность, сохраняя устойчивость?"

Игры на развитие ассоциативного мышления:

- "Технические аналогии" найти похожие механизмы в природе
- "Что общего?" сравнение разных технических систем

Работа с ресурсами:

- Анализ доступных материалов и их свойств
- Решение задач на оптимальное использование ресурсов

Для 4 класса:

Применение приемов ТРИЗ:

- Метод "функционального анализа"
- Принцип "предварительного действия"
- Прием "объединения-разделения"

Решение изобретательских задач:

- "Как защитить электронику от воды без герметичности?"
- "Как увеличить время работы без замены аккумулятора?"

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

Разработка идеальных конечных результатов:

- Проектирование системы, которая решает проблему сама
- Анализ "что мешает?" и "что помогает?"

Методическое обеспечение станции:

- Набор карточек с техническими противоречиями
- Дидактические материалы по методам ТРИЗ
- Примеры успешных изобретательских решений
- Шаблоны для анализа проблемных ситуаций
- Критерии эффективности работы на станции:
- Умение выделять главное противоречие в задаче
- Способность генерировать нестандартные решения
- Навык анализа сильных и слабых сторон предложенных идей
- Умение аргументировать свой выбор решения

Пример задания для станции:

«Команда обнаружила, что при увеличении скорости аппарат теряет устойчивость. Используя метод ТРИЗ, предложите 3 способа решения этой проблемы, используя только доступные на столе материалы.»

Такая организация работы на станции способствует формированию инженерного мышления и развивает способность находить нестандартные решения технических проблем.

Вывод: Такой формат организации занятий способствует развитию самостоятельности, ответственности и умения работать в команде, что соответствует целям современного инженерного образования.

Основные разделы программы

Раздел программы	Содержание раздела	Формируемые УУД	Кол- во часов
Основы подводной	3 класс	Личностные УУД:	16
робототехники	• Знакомство с	• Формирование	
	подводными роботами:	ответственности при	
	назначение, применение.	работе с дорогостоящим	
	• Изучение компонентов	оборудованием.	
	робота «Океаника»:	• Развитие	
	гермобокс, двигатели,	познавательной	
	рама, системы управления.	активности и интереса к	
	• Правила безопасности	инженерному творчеству.	
	при работе с	• Воспитание	
	оборудованием.	настойчивости при	
	• Простые эксперименты с	решении технических	

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

<u></u>	tup://22oscnool.ru; e-maii: j	mio.scn220@oor.gov.spo.ru	
	плавучестью: понимание	задач.	
	принципов Архимеда,		
	балансировка аппарата.		
	• Базовые навыки		
	пилотирования: движение		
	по прямой, развороты,		
	удержание глубины.		
	• Сборка простейших		
	конструкций по		
	инструкции.		
	4 класс	Регулятивные УУД:	20
	• Повторение и углубление	• Планирование	
	знаний об устройстве	последовательности	
	подводных роботов.	действий при сборке и	
	• Изучение основ	настройке роботов.	
	гидродинамики:	• Контроль и коррекция	
	сопротивление воды,	своих действий в	
	обтекаемость.	процессе пилотирования.	
	• Сложные эксперименты с	• Оценка результатов	
	плавучестью и	выполнения технических	
	остойчивостью.	заданий.	
	• Разработка и сборка		
	модифицированных		
	конструкций.		
	• Решение прикладных		
	задач: подъем грузов,		
	преодоление препятствий.		
Программирование и	4 класс (второе	Познавательные УУД:	24
автоматизация	полугодие)	• Анализ конструкции	
	• Основы алгоритмизации:	аппарата и выявление	
	линейные алгоритмы,	«узких мест».	
	циклы, условия.	• Синтез - создание	
	• Знакомство со средой	комплексных решений из	
	программирования роботов	отдельных модулей.	
	«Океаника».	• Выдвижение гипотез и	
	• Создание программ для	их проверка в ходе	

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>A</u>, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

	http://226school.ru; e-mail: j	info.scn22b@obr.gov.spb.ru	ı
	автоматического движения	экспериментов.	
	по траектории.	• Развитие	
	• Программирование	пространственного	
	простых миссий:	мышления и	
	удержание глубины,	технического	
	движение по квадрату.	воображения.	
	• Работа с датчиками:		
	обработка данных		
	сенсоров глубины и		
	ориентации.		
	• Отладка и тестирование		
	программ в бассейне.		
Проектная и	3-4 класс	Коммуникативные	20
соревновательная	• Командная работа над	ууд:	
деятельность	проектами: распределение	• Умение работать в	
	ролей, планирование,	команде: распределять	
	реализация.	роли, координировать	
	• Участие в мини-	действия.	
	соревнованиях:	• Участие в коллективном	
	прохождение трасс,	обсуждении технических	
	выполнение миссий на	решений.	
	время.	• Презентация и защита	
	• Применение методов	своих проектов.	
	ТРИЗ для решения	• Развитие навыков	
	технических	аргументации и	
	противоречий.	конструктивной критики.	
	• Разработка и защита		
	собственных проектов: от		
	идеи до рабочего проекта.		
	• Анализ успехов и неудач,		
	планирование улучшений.		

Методы и формы работы

Каждое занятие курса "Подводная робототехника" строится по принципу: **одна техническая задача - один практический результат**. Это означает, что на каждом занятии решается конкретная техническая проблема, на материале которой осваиваются новые компетенции:

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>A</u>, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

- правило сборки и балансировки подводного аппарата (задания "Равновесие", "Стабильный полет", "Точное позиционирование");
- принцип программирования автоматических миссий (задания "Движение по квадрату", "Удержание глубины", "Поиск объекта");
- метод диагностики неисправностей (кейсы "Поиск неисправности", "Экспресс-диагностика", "Оптимизация работы систем");
- способ решения технических противоречий (задачи "Скоростьманевренность", "Грузоподъемность-стабильность", "Энергоэффективностьфункциональность").

При проведении занятий учитываются следующие организационные принципы:

- техническое задание формулируется устно, учащиеся анализируют задачу, разрабатывают решение и представляют его в виде схемы или устного обоснования;
- условия технической проблемы предоставляются в письменном виде (техническое задание), учащиеся разрабатывают решение, создают прототип и проводят испытания;
- комплексные задачи предлагаются в виде кейсов, учащиеся работают в командах над поиском оптимального технического решения;
- совместно с обучающимися разрабатываются алгоритмы решения типовых технических проблем и создаются новые модификации аппаратов (творческий проект).

Особенности организации практической работы:

- задания выполняются на станциях с ротацией видов деятельности;
- используются дифференцированные задачи разного уровня сложности;
- применяется принцип "от простого к сложному" в рамках единых тематических направлений;
- обеспечивается преемственность заданий для учащихся с разным уровнем подготовки.

Универсальность материалов занятий позволяет включать в образовательный процесс как учащихся, имеющих предварительную подготовку, так и новичков, поскольку система заданий предусматривает индивидуальный темп освоения материала и вариативность технических решений.

Формы организации учебной деятельности:

- работа в малых группах (2-3 человека)
- индивидуальные практические задания
- коллективные обсуждения технических решений
- проектная деятельность
- соревновательные форматы
- экспериментальные исследования

Такая организация учебного процесса способствует развитию инженерного мышления, технического творчества и умения работать в команде.

Формы проведения занятий

- 1. Проектный практикум разработка и сборка подводных аппаратов для решения конкретных задач.
- 2. Лабораторный эксперимент изучение плавучести, балансировки и гидродинамики через опыты с моделями.
- 3. Командные соревнования отработка миссий в бассейне на точность и скорость выполнения заданий.

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>A</u>, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

- 4. Станционное занятие одновременная работа групп по направлениям: пилотирование, программирование, конструирование, ТРИЗ.
- 5. Проблемный семинар коллективный разбор неисправностей и поиск инженерных решений.
- 6. ТРИЗ-практикум решение изобретательских задач и технических противоречий.
 - 7. Мастер-класс отработка навыков пайки, сборки и настройки аппаратов.
- 8. Миссионный тренинг выполнение комплексных заданий в бассейне (поиск объектов, съемка, преодоление препятствий).
- 9. Прототипирование создание и испытание модифицированных конструкций аппаратов.
 - 10. Презентация проектов защита и демонстрация разработанных решений.

№	Раздел программы	Кол- во часов	Основные виды учебной деятельности учащихся
3 к	ласс (1-й год обучения	- 64 часа)	
1.	Основы подводной робототехники	16	Изучать устройство подводного робота «Океаника». Проводить эксперименты с плавучестью и балансировкой. Осваивать правила безопасности при работе с оборудованием. Собирать базовые конфигурации аппарата по инструкции. Выполнять начальные упражнения по пилотированию в бассейне.
2.	Конструирование и сборка	20	Анализировать конструктивные особенности аппарата. Модифицировать базовую сборку под конкретные задачи. Проводить испытания различных конфигураций. Диагностировать и устранять простые неисправности. Оптимизировать конструкцию для улучшения характеристик.
3.	Основы пилотирования	28	Отрабатывать базовые маневры: движение по прямой, развороты. Осваивать удержание глубины и стабилизацию положения. Выполнять комплексные задания: прохождение трасс, поиск объектов. Участвовать в командных эстафетах и мини-соревнованиях. Анализировать ошибки и совершенствовать технику пилотирования.
4 ĸ	ласс (2-й год обучения	- 64 часа)	
4.	Программирование автономных миссий	24	Изучать основы алгоритмизации и среды программирования. Создавать программы для автоматического движения. Работать с данными датчиков глубины и ориентации. Отлаживать программы через тестирование в бассейне. Разрабатывать комплексные миссии с использованием программирования.
5.	Техническое проектирование	20	Анализировать технические задания и разрабатывать решения. Применять методы ТРИЗ для устранения технических противоречий. Создавать специализированные модули и приспособления. Проводить оптимизацию конструкций под конкретные миссии. Разрабатывать документацию на свои проекты.
6.	Соревновательная практика	20	Участвовать в подготовке к соревнованиям по регламенту. Отрабатывать командное взаимодействие при выполнении миссий. Разрабатывать стратегии прохождения соревновательных трасс. Анализировать результаты

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

	выступлений и совершенствовать аппараты. Готовить
	презентации своих проектов для защиты.

Тематическое планирование, 3 класс (первый год обучения)

Месяц	№	Развиваемые компетенции и содержание занятия
	Занятия	
Сентябрь	1	Вводное занятие. Знакомство с подводной робототехникой. Правила безопасности. Изучение комплектации «Океаника».
	2	Основы плавучести. Проведение экспериментов с плавучестью
	2	предметов.
	3	Сборка базовой модели аппарата. Изучение основных компонентов.
	4	Знакомство со Scratch. Интерфейс программы, базовые блоки.
	5	Создание первой анимации в Scratch. Практическая работа.
	6	Конструкция подводного робота. Изучение гермобокса, двигателей.
	7	Практика сборки-разборки. Отработка навыков работы с
	,	инструментами.
Октябрь	8	Основы пилотирования І. Отработка базовых маневров: движение по
ОКТИОРЬ		прямой.
	9	Программирование в Scratch I. Блоки движения, звука, внешности.
	10	Создание простой игры в Scratch. Практическая работа.
	11	Развороты на месте. Отработка маневров в бассейне.
	12	Программирование в Scratch II. Работа с циклами и условиями.
	13	Управление спрайтами в Scratch. Создание интерактивного проекта.
	14	Пространственное ориентирование. Задания на ориентирование в
		бассейне.
Ноябрь	15	Траекторное движение. Отработка движения по заданной траектории.
	16	Командные задания І. Эстафеты с передачей управления.
	17	Синхронное пилотирование. Отработка согласованных действий.
	18	Диагностика неисправностей І. Поиск типовых проблем.
	19	Устранение заклинивания винтов. Практическая работа.
	20	Программирование в Scratch III. Создание алгоритмов движения для
		виртуального робота.
	21	Нарушение герметичности. Методы обнаружения и устранения.
Декабрь	22	Программирование в Scratch IV. Работа с переменными.
	23	Создание счетчика очков в игре. Практическая работа в Scratch.
	24	Подготовка к соревнованиям І. Отработка стандартных миссий.
	25	Прохождение ворот. Тренировка точности маневрирования.
	26	Подъем грузов. Отработка работы с манипулятором.
	27	Программирование в Scratch V. Создание многоуровневой игры.
	28	Итоговое занятие полугодия. Демонстрация навыков.
Январь	29	Мини-соревнования внутри группы. Подведение итогов полугодия.
	30	Техническое обслуживание. Чистка, смазка компонентов.
	31	Замена компонентов. Практическая работа.
	32	Профилактические работы. Обслуживание аппарата.
	33	Программирование в Scratch VI. Разработка проекта "Виртуальный бассейн".
	34	Моделирование движения робота в Scratch.
	35	Углубленное пилотирование І. Сложные маневры.
Февраль	36	Движение "змейкой". Отработка точного управления.
Февраль	37	Развороты в ограниченном пространстве.

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>A</u>, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

	38	Работа в ограниченной видимости. Задания с ухудшенными условиями.
	39	Командные задания II. Совместное выполнение сложных миссий.
	40	Распределение ролей в команде.
	41	Диагностика неисправностей II. Работа с электронными компонентами.
	42	Диагностика двигателей. Практическая работа.
Март	43	Диагностика датчиков. Методы проверки работоспособности.
•	44	Творческое проектирование І. Модернизация аппарата.
	45	Программирование в Scratch VII. Создание анимированной инструкции
		по сборке робота.
	46	Углубленное пилотирование II. Прецизионное управление.
	47	Точное позиционирование. Отработка навыков.
	48	Удержание курса. Тренировка стабильности управления.
	49	Подготовка к соревнованиям II. Отработка миссий на время.
Апрель	50	Тактическое планирование. Разработка стратегий.
•	51	Сложные миссии І. Поиск подводных объектов.
	52	Идентификация объектов. Документирование результатов.
	53	Сложные миссии II. Многоэтапные задания.
	54	Последовательное выполнение операций.
	55	Программирование в Scratch VIII. Финальный проект.
	56	Создание образовательного квеста.
Май	57	Итоговый проект І. Разработка индивидуального проекта.
	58	Итоговый проект II. Сборка аппарата для финального проекта.
	59	Итоговый проект III. Настройка аппарата.
	60	Итоговый проект IV. Отработка проекта.
	61	Итоговый проект V. Демонстрация проекта.
	62	Подготовка презентации. Оформление результатов.
	63	Годовая аттестация. Защита проектов.
		Демонстрация приобретенных навыков. Подведение итогов года.

Тематическое планирование, 4 класс (второй год обучения, 64 часа)

Месяц	№ занятия	Развиваемые компетенции и содержание занятия
Сентябрь	1	Вводное занятие. Правила безопасности. Повторение основ работы с роботами «Океаника». Игра «Собери робота за 5 минут».
	2	Повторение Scratch. Интерфейс программы. Создание анимации "Мой подводный робот".
	3	Scratch: алгоритмы управления. Программирование виртуального джойстика для управления роботом.
	4	Scratch: игровые симуляторы. Создание игры "Подводный лабиринт" с использованием стрелок.
	5	Практическое пилотирование. Отработка точного движения по заданной траектории в бассейне.
	6	Scratch: система автоматизации. Программирование автоматического движения по квадрату.
	7	Командные соревнования. Эстафета "Подводный курьер" - доставка грузов между станциями.
Октябрь	8	Работа с датчиками. Практическое измерение глубины. Эксперимент "Кто точнее?".
	9	Scratch: финальный проект. Создание образовательной игры "Основы подводной робототехники".

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер <u>А</u>, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

		http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru
	10	Конструирование. Создание и тестирование защитных кожухов для
		подводного аппарата.
	11	Практикум "Диагностика". Поиск и устранение неисправностей в
		системе управления.
	12	Подготовка к соревнованиям. Отработка миссий по регламенту
		"Подводные исследования".
	13	Мини-соревнования. Прохождение трассы на время с элементами
		программирования.
	14	Творческий проект. Разработка и презентация собственной
	17	модификации робота.
Ноябрь	15	Углубленное пилотирование. Точное маневрирование в ограниченном
полорь	13	пространстве.
	16	Работа с манипуляторами. Выполнение сложных операций по захвату
	10	объектов.
	17	
	1 /	Командные миссии. Совместное выполнение заданий с распределением
	10	ролей.
	18	Проектирование модулей. Разработка специализированного
	10	оборудования для робота.
	19	Сложные миссии. Поиск и идентификация объектов в условиях
		ограниченной видимости.
	20	Подготовка к турниру. Отработка соревновательных миссий на время.
	21	Школьные соревнования. Участие в турнире по подводной
		робототехнике.
Декабрь	22	Анализ выступлений. Разбор успехов и ошибок. Планирование
		улучшений.
	23	Творческий проект "Робот-исследователь". Разработка аппарата для
		конкретной миссии.
	24	Оптимизация конструкции. Улучшение характеристик робота на основе
		анализа.
	25	Работа с данными. Анализ показаний датчиков и их визуализация.
	26	Создание прототипов. Изготовление дополнительных деталей и
		аксессуаров для робота.
	27	Подготовка к выставке. Оформление проектов и создание презентаций.
	28	Итоговое занятие полугодия. Выставка проектов, награждение лучших
		работ.
Январь	29	Знакомство с Arduino. Основные компоненты платы. Правила
		безопасной работы.
	30	Arduino: первая программа. Подключение светодиода. Проект
		"Мигающий сигнал".
	31	Arduino: управление моторами. Подключение и программирование
		движения вперед-назад.
	32	Повторение Arduino. Закрепление навыков подключения и
	32	программирования моторов.
	33	Arduino: работа с датчиками. Подключение датчика расстояния. Проект
	33	"Автостоп".
	34	Практикум "Собери схему". Повторение подключения датчиков и
	J+	
Фарка	25	моторов к Arduino.
Февраль	35	Arduino: звуковые сигналы. Программирование звукового оповещения.
	36	Arduino: система индикации. Подключение светодиодной ленты.
	37	Повторение проектов Arduino. Создание комплексного устройства с
	26	датчиками и индикацией.
	38	Arduino: творческая задача. Разработка собственного проекта с

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

		использованием изученных компонентов.
	39	Интеграция Arduino с роботом. Установка платы на подводный аппарат.
	40	Тестирование системы. Проверка работы Arduino-компонентов на
		роботе.
Март	41	Arduino: продвинутые проекты. Программирование автоматического
		избегания препятствий.
	42	Arduino: работа с сервоприводами. Подключение и программирование
		манипулятора.
	43	Повторение и закрепление. Отладка программ, поиск и исправление
		ошибок.
	44	Создание автономной системы. Разработка робота, выполняющего
		задания без оператора.
	45	Подготовка к финальным соревнованиям. Отработка миссий с
		Arduino-управлением.
	46	Финальные соревнования. Участие в турнире с использованием
		программируемых систем.
Апрель	47	Индивидуальные проекты. Выбор темы и разработка собственного
		робота.
	48	Работа над проектами. Консультации с педагогом, подбор материалов.
	49	Программирование проектов. Написание кода для индивидуальных
		проектов.
	50	Создание прототипов. Изготовление и сборка деталей для проектов.
	51	Тестирование и доработка. Проверка работы проектов в бассейне.
	52	Подготовка к защите. Создание презентаций и документации.
Май	53	Защита проектов. Публичная презентация своих работ.
	54	Выставка достижений. Демонстрация лучших проектов родителям и
		ученикам школы.
	55	Итоговое занятие. Подведение итогов года, награждение активных
		участников.
	56-64	Резервные занятия. Завершение проектов, дополнительные
		соревнования, экскурсии.